For pencils
Atomic Number: |
6 |
Atomic Symbol: |
C |
Atomic Weight: |
12.011 |
Electron Configuration: |
[He]2s22p2 |
History
(Latin: carbo, charcoal) Carbon, an element of prehistoric discovery, is very widely
distributed in nature. It is found in abundance in the sun, stars, comets, and atmospheres
of most planets. Carbon in the form of microscopic diamonds is found in some meteorites.
Natural diamonds are found in kimberlite of ancient volcanic "pipes," found
in South Africa, Arkansas, and elsewhere. Diamonds are now also being recovered from the
ocean floor off the Cape of Good Hope. About 30% of all industrial diamonds used in the
U.S. are now made synthetically.
The energy of the sun and stars can be attributed at least in part to the well-known
carbon-nitrogen cycle.
Forms
Carbon is found free in nature in three allotropic forms: amorphous, graphite, and
diamond. A fourth form, known as "white" carbon, is now thought to exist.
Ceraphite is one of the softest known materials while diamond is one of the hardest.
Graphite exists in two forms: alpha and beta. These have identical physical properties,
except for their crystal structure. Naturally occurring graphites are reported to contain
as much as 30% of the rhombohedral (beta) form, whereas synthetic materials contain only
the alpha form. The hexagonal alpha type can be converted to the beta by mechanical
treatment, and the beta form reverts to the alpha on heating it above 1000oC.
In 1969 a new allotropic form of carbon was produced during the sublimation of
pyrolytic graphite at low pressures. Under free-vaporization conditions above ~2550oK,
"white" carbon forms as small transparent crystals on the edges of the planes of
graphite. The interplanar spacings of "white" carbon are identical to those of
carbon form noted in the graphite gneiss from the Ries (meteroritic) Crater of Germany.
"White" carbon is a transparent birefringent material. Little information is
presently available about this allotrope.
Compounds
In combination, carbon is found as carbon dioxide in the atmosphere of the earth and
dissolved in all natural waters. It is a component of great rock masses in the form of
carbonates of calcium (limestone), magnesium, and iron. Coal, petroleum, and natural gas
are chiefly hydrocarbons.
Carbon is unique among the elements in the vast number and variety of compounds it can
form. With hydrogen, oxygen, nitrogen, and other elements, it forms a very large number of
compounds, carbon atom often being linked to carbon atom. There are close to ten million
known carbon compounds, many thousands of which are vital to organic and life processes.
Without carbon, the basis for life would be impossible. While it has been thought that
silicon might take the place of carbon in forming a host of similar compounds, it is now
not possible to form stable compounds with very long chains of silicon atoms. The
atmosphere of Mars contains 96.2% CO2.
Some of the most important compounds of carbon are carbon dioxide (CO2), carbon monoxide (CO), carbon disulfide (CS2), chloroform (CHCl3), carbon tetrachloride (CCl4), methane (CH4), ethylene (C2H4), acetylene (C2H2), benzene (C6H6), acetic acid (CH3COOH), and their derivatives.
Isotopes
Carbon has seven isotopes. In 1961 the International Union of Pure and Applied
Chemistry adopted the isotope carbon-12 as the basis for atomic weights. Carbon-14, an
isotope with a half-life of 5715 years, has been widely used to date such materials as
wood, archaeological specimens, etc.
Costs
As of 1990 carbon-13 was commercially available at a cost of about $700/g.
|