For color TV tubes.
Atomic Number: |
63 |
Atomic Symbol: |
Eu |
Atomic Weight: |
151.96 |
Electron Configuration: |
[Xe]6s24f7 |
History
(Europe) In 1890 Boisbaudran obtained basic fractions from samarium-gadolinium
concentrates which had spark spectral lines not accounted for by samarium or gadolinium.
These lines subsequently have been shown to belong to europium. The discovery of europium
is generally credited to Demarcay, who separated the rare earth in reasonably pure form in
1901. The pure metal was not isolated until recent years.
Production
Europium is now prepared by mixing Eu2O3 with a 10%-excess of lanthanum
metal and heating the mixture in a tantalum crucible under high vacuum. The element is
collected as a silvery-white metallic deposit on the walls of the crucible.
Properties
As with other rare-earth metals, except for lanthanum, europium ignites in air at about
150 to 180oC. Europium is
about as hard as lead and is quite ductile. It is the most reactive of the rare-earth
metals, quickly oxidizing in air. It resembles calcium in its reaction with water.
Bastnasite and monazite are the principal ores containing europium.
Sources
Europium has been identified spectroscopically in the sun and certain stars. Seventeen
isotopes are now recognized. Europium isotopes are good neutron absorbers and are being
studied for use in nuclear control applications.
Uses
Europium oxide is now widely used as a phospor activator and europium-activated yttrium
vanadate is in commercial use as the red phosphor in color TV tubes. Europium-doped
plastic has been used as a laser material. With the development of ion-exchange techniques
and special processes, the cost of the metal has been greatly reduced in recent years.
Cost
Europium is one of the rarest and most costly of the rare-earth metals. It is priced
about about $7500/kg.
|