01/21/2025
Advertise
Environmental Bids
Finance Cleanups
Special Services
Equipment Sales
Equipment Rental
Hazmat Labels
Explosion Proof
Drums
Employment
Microbial Products
* Celebrating our 29th year *
[ Home > Resources > Education > Periodic Table of the Elements ]
Ruthenium

For eye treatment.

Atomic Number: 44
Atomic Symbol: Ru
Atomic Weight: 101.07
Electron Configuration: [Kr]5s14d7

History

(L. Ruthenia, Russia) Berzelius and Osann in 1827 examined the residues left after dissolving crude platinum from the Ural mountains in aqua regia. While Berzelius found no unusual metals, Osann thought he found three new metals, one of which he named ruthenium. In 1844 Klaus, generally recognized as the discoverer, showed that Osann's ruthenium oxide was very impure and that it contained a new metal. Klaus obtained 6 g of ruthenium from the portion of crude platinum that is insoluble in aqua regia.

Sources

A member of the platinum group, ruthenium occurs native with other members of the group in ores found in the Ural mountains and in North and South America. It is also found along with other platinum metals in small but commercial quantities in pentlandite of the Sudbury, Ontario, nickel-mining region, and in pyroxinite deposits of South Africa.

Production

The metal is isolated commercially by a complex chemical process, the final stage of which is the hydrogen reduction of ammonium ruthenium chloride, which yields a powder. The powder is consolidated by powder metallurgy techniques or by argon-arc welding.

Properties

Ruthenium is a hard, white metal and has four crystal modifications. It does not tarnish at room temperatures, but oxidizes explosively. It is attacked by halogens, hydroxides, etc. Ruthenium can be plated by electrodeposition or by thermal decomposition methods. The metal is one of the most effective hardeners for platinum and palladium, and is alloyed with these metals to make electrical contacts for severe wear resistance. A ruthenium-molybdenum alloy is said to be superconductive at 10.6 K. The corrosion resistance of titanium is improved a hundredfold by addition of 0.1% ruthenium. It is a versatile catalyst. Hydrogen sulfide can be split catalytically by light using an aqueous suspension of CdS particles loaded with ruthenium dioxide. It is thought this may have application to removal of H2S from oil refining and other industrial processes. Compounds in at least eight oxidation states have been found, but of these, the +2, +3, and +4 states are the most common. Ruthenium tetroxide, like osmium tetroxide, is highly toxic. In addition, it may explode. Ruthenium compounds show a marked resemblance to those of cadmium.

Cost

The metal is priced at about $30/g.