For eye treatment.
Atomic Number: |
44 |
Atomic Symbol: |
Ru |
Atomic Weight: |
101.07 |
Electron Configuration: |
[Kr]5s14d7 |
History
(L. Ruthenia, Russia) Berzelius and Osann in 1827 examined the residues left after
dissolving crude platinum from the Ural mountains in aqua regia. While Berzelius found no
unusual metals, Osann thought he found three new metals, one of which he named ruthenium.
In 1844 Klaus, generally recognized as the discoverer, showed that Osann's ruthenium oxide
was very impure and that it contained a new metal. Klaus obtained 6 g of ruthenium from
the portion of crude platinum that is insoluble in aqua regia.
Sources
A member of the platinum group, ruthenium occurs native with other members of the group
in ores found in the Ural mountains and in North and South America. It is also found along
with other platinum metals in small but commercial quantities in pentlandite of the
Sudbury, Ontario, nickel-mining region, and in pyroxinite deposits of South Africa.
Production
The metal is isolated commercially by a complex chemical process, the final stage of
which is the hydrogen reduction of ammonium ruthenium chloride, which yields a powder. The
powder is consolidated by powder metallurgy techniques or by argon-arc welding.
Properties
Ruthenium is a hard, white metal and has four crystal modifications. It does not
tarnish at room temperatures, but oxidizes explosively. It is attacked by halogens,
hydroxides, etc. Ruthenium can be plated by electrodeposition or by thermal decomposition
methods. The metal is one of the most effective hardeners for platinum and palladium, and
is alloyed with these metals to make electrical contacts for severe wear resistance. A
ruthenium-molybdenum alloy is said to be superconductive at 10.6 K. The corrosion
resistance of titanium is improved a hundredfold by addition of 0.1% ruthenium. It is a
versatile catalyst. Hydrogen sulfide can be split catalytically by light using an aqueous
suspension of CdS particles loaded with ruthenium dioxide. It is thought this may have
application to removal of H2S from oil refining and other industrial processes. Compounds
in at least eight oxidation states have been found, but of these, the +2, +3, and +4
states are the most common. Ruthenium tetroxide, like osmium tetroxide, is highly toxic.
In addition, it may explode. Ruthenium compounds show a marked resemblance to those of
cadmium.
Cost
The metal is priced at about $30/g.
|